\(\int \frac {1}{x^2 (a+b x^3)} \, dx\) [327]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 122 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=-\frac {1}{a x}+\frac {\sqrt [3]{b} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3}}+\frac {\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac {\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}} \]

[Out]

-1/a/x+1/3*b^(1/3)*ln(a^(1/3)+b^(1/3)*x)/a^(4/3)-1/6*b^(1/3)*ln(a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/a^(4/3)
+1/3*b^(1/3)*arctan(1/3*(a^(1/3)-2*b^(1/3)*x)/a^(1/3)*3^(1/2))/a^(4/3)*3^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {331, 298, 31, 648, 631, 210, 642} \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {\sqrt [3]{b} \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3}}-\frac {\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}}+\frac {\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac {1}{a x} \]

[In]

Int[1/(x^2*(a + b*x^3)),x]

[Out]

-(1/(a*x)) + (b^(1/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(4/3)) + (b^(1/3)*Log[a^(1
/3) + b^(1/3)*x])/(3*a^(4/3)) - (b^(1/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Dist[-(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{a x}-\frac {b \int \frac {x}{a+b x^3} \, dx}{a} \\ & = -\frac {1}{a x}+\frac {b^{2/3} \int \frac {1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{4/3}}-\frac {b^{2/3} \int \frac {\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{4/3}} \\ & = -\frac {1}{a x}+\frac {\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac {\sqrt [3]{b} \int \frac {-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a^{4/3}}-\frac {b^{2/3} \int \frac {1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 a} \\ & = -\frac {1}{a x}+\frac {\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac {\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}}-\frac {\sqrt [3]{b} \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{a^{4/3}} \\ & = -\frac {1}{a x}+\frac {\sqrt [3]{b} \tan ^{-1}\left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{4/3}}+\frac {\sqrt [3]{b} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{4/3}}-\frac {\sqrt [3]{b} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.93 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {-6 \sqrt [3]{a}+2 \sqrt {3} \sqrt [3]{b} x \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt {3}}\right )+2 \sqrt [3]{b} x \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-\sqrt [3]{b} x \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{4/3} x} \]

[In]

Integrate[1/(x^2*(a + b*x^3)),x]

[Out]

(-6*a^(1/3) + 2*Sqrt[3]*b^(1/3)*x*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + 2*b^(1/3)*x*Log[a^(1/3) + b^(1
/3)*x] - b^(1/3)*x*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(4/3)*x)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.68 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.43

method result size
risch \(-\frac {1}{a x}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{4} \textit {\_Z}^{3}-b \right )}{\sum }\textit {\_R} \ln \left (\left (-4 \textit {\_R}^{3} a^{4}+3 b \right ) x -a^{3} \textit {\_R}^{2}\right )\right )}{3}\) \(53\)
default \(-\frac {\left (-\frac {\ln \left (x +\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x +\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right ) b}{a}-\frac {1}{a x}\) \(106\)

[In]

int(1/x^2/(b*x^3+a),x,method=_RETURNVERBOSE)

[Out]

-1/a/x+1/3*sum(_R*ln((-4*_R^3*a^4+3*b)*x-a^3*_R^2),_R=RootOf(_Z^3*a^4-b))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.84 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=-\frac {2 \, \sqrt {3} x \left (\frac {b}{a}\right )^{\frac {1}{3}} \arctan \left (\frac {2}{3} \, \sqrt {3} x \left (\frac {b}{a}\right )^{\frac {1}{3}} - \frac {1}{3} \, \sqrt {3}\right ) + x \left (\frac {b}{a}\right )^{\frac {1}{3}} \log \left (b x^{2} - a x \left (\frac {b}{a}\right )^{\frac {2}{3}} + a \left (\frac {b}{a}\right )^{\frac {1}{3}}\right ) - 2 \, x \left (\frac {b}{a}\right )^{\frac {1}{3}} \log \left (b x + a \left (\frac {b}{a}\right )^{\frac {2}{3}}\right ) + 6}{6 \, a x} \]

[In]

integrate(1/x^2/(b*x^3+a),x, algorithm="fricas")

[Out]

-1/6*(2*sqrt(3)*x*(b/a)^(1/3)*arctan(2/3*sqrt(3)*x*(b/a)^(1/3) - 1/3*sqrt(3)) + x*(b/a)^(1/3)*log(b*x^2 - a*x*
(b/a)^(2/3) + a*(b/a)^(1/3)) - 2*x*(b/a)^(1/3)*log(b*x + a*(b/a)^(2/3)) + 6)/(a*x)

Sympy [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.24 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\operatorname {RootSum} {\left (27 t^{3} a^{4} - b, \left ( t \mapsto t \log {\left (\frac {9 t^{2} a^{3}}{b} + x \right )} \right )\right )} - \frac {1}{a x} \]

[In]

integrate(1/x**2/(b*x**3+a),x)

[Out]

RootSum(27*_t**3*a**4 - b, Lambda(_t, _t*log(9*_t**2*a**3/b + x))) - 1/(a*x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.87 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=-\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {\log \left (x^{2} - x \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {\log \left (x + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, a \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {1}{a x} \]

[In]

integrate(1/x^2/(b*x^3+a),x, algorithm="maxima")

[Out]

-1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - (a/b)^(1/3))/(a/b)^(1/3))/(a*(a/b)^(1/3)) - 1/6*log(x^2 - x*(a/b)^(1/3)
 + (a/b)^(2/3))/(a*(a/b)^(1/3)) + 1/3*log(x + (a/b)^(1/3))/(a*(a/b)^(1/3)) - 1/(a*x)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.99 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {b \left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a^{2}} + \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a^{2} b} - \frac {\left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{2} + x \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b} - \frac {1}{a x} \]

[In]

integrate(1/x^2/(b*x^3+a),x, algorithm="giac")

[Out]

1/3*b*(-a/b)^(2/3)*log(abs(x - (-a/b)^(1/3)))/a^2 + 1/3*sqrt(3)*(-a*b^2)^(2/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b
)^(1/3))/(-a/b)^(1/3))/(a^2*b) - 1/6*(-a*b^2)^(2/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b) - 1/(a*x)

Mupad [B] (verification not implemented)

Time = 5.70 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.84 \[ \int \frac {1}{x^2 \left (a+b x^3\right )} \, dx=\frac {b^{1/3}\,\ln \left (b^{1/3}\,x+a^{1/3}\right )}{3\,a^{4/3}}-\frac {1}{a\,x}-\frac {b^{1/3}\,\ln \left (4\,b^{1/3}\,x-2\,a^{1/3}+\sqrt {3}\,a^{1/3}\,2{}\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{3\,a^{4/3}}+\frac {b^{1/3}\,\ln \left (4\,b^{1/3}\,x-2\,a^{1/3}-\sqrt {3}\,a^{1/3}\,2{}\mathrm {i}\right )\,\left (-\frac {1}{6}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )}{a^{4/3}} \]

[In]

int(1/(x^2*(a + b*x^3)),x)

[Out]

(b^(1/3)*log(b^(1/3)*x + a^(1/3)))/(3*a^(4/3)) - 1/(a*x) - (b^(1/3)*log(3^(1/2)*a^(1/3)*2i + 4*b^(1/3)*x - 2*a
^(1/3))*((3^(1/2)*1i)/2 + 1/2))/(3*a^(4/3)) + (b^(1/3)*log(4*b^(1/3)*x - 3^(1/2)*a^(1/3)*2i - 2*a^(1/3))*((3^(
1/2)*1i)/6 - 1/6))/a^(4/3)